BASEMENTBasic Simulation Environment for computation of environmental flow and natural hazard simulationLaboratory of Hydraulics, Hydrology and Glaciology (VAW)ETH Zurich | ![]() |
You are not logged in.
Hi
I've been running Basement 2.8 2D simualtions without problem. When I analyse my results I noticed that the simulation does not go to the end, it stops somewhere in the middle. This is strange since in the main Basement window is stated that the simulation has reach the end (100%). I have checked total_run_time and it is identical to the duration of the hydrograph. I don't know where this issue come from, can anyone help me with this?
Below the hydrograph the log:
#TIME(sec) VALUE
0 20
24360 119.812
65530 24.4419
PROJECT {
title = xxxxx
}
DOMAIN {
multiregion = xxxxx
BASEPLANE_2D {
region_name = xxxxx
GEOMETRY {
type = 2dm
file = xxxxx.2dm
STRINGDEF {
name = inflow
node_ids = (31 660 30 661 662 29 663 664 28 665 666 27 667 668 26 669 670 25 671 672 24 673 674 23 675 676 22 677 678 21 679 680 20 681 682 19 683 684 18)
upstream_direction = right
}
STRINGDEF {
name = outflow
node_ids = (134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 757 758 170)
upstream_direction = right
}
STRINGDEF {
name = inflow_BW
node_ids = (602 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 559 788 789 790 791 792 793 794 374)
upstream_direction = right
}
STRINGDEF {
name = outflow_BW
node_ids = (578 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 373)
upstream_direction = right
}
}
HYDRAULICS {
BOUNDARY {
type = hydrograph
string_name = inflow
file = HQ100.txt
slope = 84
}
BOUNDARY {
type = hqrelation
string_name = outflow
slope = 9
}
INITIAL {
type = continue
file = Lonza_restart.cgns
}
FRICTION {
type = strickler
default_friction = 23
input_type = index_table
index = (1 2 3)
friction = (23 25 30)
wall_friction = off
}
PARAMETER {
simulation_scheme = exp
riemann_solver = exact
minimum_water_depth = 0.2
}
}
MORPHOLOGY {
PARAMETER {
porosity = 37
density = 2650
control_volume_type = constant
control_volume_thickness = (0.1 0.1 0.1)
control_volume_thickness_index = (1 2 3)
}
INITIAL {
type = initial_mesh
}
BEDMATERIAL {
GRAIN_CLASS {
diameters = (250)
}
MIXTURE {
name = single_grain
volume_fraction = (100)
}
SOIL_DEF {
name = soil_bed
LAYER {
mixture = single_grain
bottom_elevation = -0.1
}
}
SOIL_DEF {
name = soil_outside
}
SOIL_ASSIGNMENT {
type = index_table
index = (1 2 3)
soil = (soil_bed soil_outside soil_outside)
}
}
BEDLOAD {
PARAMETER {
limit_bedload_wetted = off
use_cell_averaged_bedload_flux = off
}
FORMULA {
bedload_formula = mpm
bedload_factor = 0.616
theta_critical = (0.04 0.04 0.04)
theta_critical_index = (1 2 3)
bedload_exponent = 1.6
}
BOUNDARY {
type = IODown
string_name = outflow
}
DIRECTION {
lateral_transport_type = lateral_bed_slope
lateral_transport_factor = 1.5
lateral_index = (1 2)
}
}
GRAVITATIONAL_TRANSPORT {
gravity_transport_on_cells = all
angle_wetted_criterion = fully_wetted
index = (1 2)
angle_failure_dry = (30 30)
angle_failure_wetted = (25 25)
angle_failure_deposited = (20 20)
max_iterations = 30
}
SOURCE {
EXTERNAL_SOURCE {
type = sediment_discharge
file = Geschiebeganglinie_HQ100Kurz_55000.txt
mixture = single_grain
elem_ids = (605 608 809 815 1027 6211 7498 7507 10154 11268 11279 11605 11925 11926 12196 12287 12317 12343 12371 12403 12408 12428 12499 12561 12585 12586 12589 12679 12687 12688 12689 12912 12913 12914 13830 13880 13934 13961 13963 13964 13965 13966 13967 13970 14148 14149 14150 14261 14262 14265 14314 14315 14316 14350 14351 14530 14531 14533 14540 14541 14542 14543 14544 14545 14621 14622 14623 14625 14626 14627 14628 14630 14748 14749 14792 14794 15375 15376 15383 15384 15385 15386 15406 15435 15436 15437 15438 15583 15584 )
}
}
}
TIMESTEP {
start_time = 0.0
total_run_time = 65530
CFL = 0.95
}
OUTPUT {
console_time_step = 1000
restart_time_step = 1E32
SPECIAL_OUTPUT {
format = sms
type = node_centered
values = (depth wse velocity abs_velocity deltaz z_element tau specific_discharge sediment_sum bedload_vec)
output_time_step = 500
}
SPECIAL_OUTPUT {
type = balance
balance_values = ( sediment timestep )
output_time_step = 1000
}
SPECIAL_OUTPUT {
type = boundary_history
boundary_values = (Q Qsed )
output_time_step = 1000
history_one_file = yes
}
SPECIAL_OUTPUT {
type = stringdef_history
stringdefs = (inflow outflow)
stringdef_values = (Q Qsed wse zbed)
output_time_step = 100
}
}
}
PHYSICAL_PROPERTIES {
gravity = 9.81
viscosity = 1e-06
rho_fluid = 1000
}
PARALLEL {
number_threads = 14
}
}
Offline
Hi
Maybe I wasn't so clear with my issue. The simualtion runs to the end (duration 65530 s), then I look at the output files (.sol) and the simulation was saved until time 36000 s. The same when I visualize the result with crayfish, it is clear that the simulation wasn't completely saved.
Many thanks for the reply
Offline
Hi, it may depend on your restart file, the one you use for your hydraulics initial conditions.
How long did the previous simulation (the one from which you start this one) lasted?
Matteo
Offline
Hi Matteo
Thanks for the reply.
The previous simulation (hydraulic initial conditions) lasted 3'600 s. The simulation with sediment tranport stopped saving at 36'000 s, so longer than the total_run_time of the simulation for hydraulic initial conditions . Do I need to run the simulation for the hydraulic conditions longer?
Regards
Offline
Hi there
Any update/suggestion on this? I'm still having the same problem
Thanks
Offline
Hi Matteo
I really need help with this issue. Do I need to run the simulation for the initial hydraulic conditions longer?
Please any suggestions to solve the problem are welcome
Regards
Offline
Hi,
I don't know: have you tried to run a longer hydraulic simulation?
However, I believe you could try to set the restart_solution_time parameter in your HYDRAULIC/INITIAL block.
I hope this helps.
Matteo
Offline