User Forum of Software BASEMENT

BASEMENT
Basic Simulation Environment for computation of environmental flow and natural hazard simulation
Laboratory of Hydraulics, Hydrology and Glaciology (VAW)
ETH Zurich
Basement_Logo

You are not logged in.

#1 2021-05-12 15:32:20

chri_and
User
Registered: 2017-07-27
Posts: 34

cross section without sediment transport

Hi everyone

I've tried to simulate a 1d river junction coupling. There is only one upstream inflow with sediment (triftbach). The simulation works mostly very well. However, in the second last cross section of this upstream basechain (last before the coupling cross section), there is no sediment transport (even though there should be).
How can I solve this issue/ what is the issue? It should not be a problem of the geometry, since in the simulation of only this basechain (without coupling), there is sediment transport in this cross section as well.
Below, there is my bmc code.

Thank you for your help,
Celine

---

PROJECT {
	title  = triftbach_mattervispa
	author = anonymous_author
}
DOMAIN {
	multiregion = triftbach_mattervispa_mit_morph
	BASECHAIN_1D {
		region_name = mattervispa_oben
		GEOMETRY {
			type                = basement
			file                = Mattervispa_oben.bmg
			cross_section_order = (230.8636 210.8636 190.8636 170.8636 150.8636 130.8636 110.8636 90.86365 )
			dump_crosssections  = no
		}
		HYDRAULICS {
			PARAMETER {
				minimum_water_depth   = 0.0001
				riemann_solver        = roe
				stretch_boundary_elem = yes
				simulation_scheme     = explicit
				SECTION_COMPUTATION {
					type            = table
					min_interval    = 0.001
					max_interval    = 0.01
					internal_levees = off
				}
			}
			FRICTION {
				type                = strickler
				default_friction    = 57
				grain_size_friction = no
			}
			INITIAL {
				type = continue
				file = Mattervispa_oben_initial.dat
			}
			BOUNDARY {
				name                 = mattervispa_oben_up
				string               = upstream
				type                 = hydrograph
				file                 = hydrograph_dry.dat
				slope                = 27
				precision            = 0.0001
				number_of_iterations = 250
			}
			BOUNDARY {
				name                = mattervispa_oben_down
				string              = downstream
				type                = coupling_zhydrograph
				zhyd_relaxation_tau = 20.0
			}
		}
		TIMESTEP {
			CFL               = 0.95
			total_run_time    = 41400
			maximum_time_step = 100
			initial_time_step = 0.1
			start_time        = 0.1
		}
		OUTPUT {
			output_time_step  = 600
			restart_time_step = 1E32
		}
		MORPHOLOGY {
			PARAMETER {
				porosity                 = 37
				density                  = 2650
				wetting_fraction         = 0.1
				control_volume_thickness = 0.2
				max_dz_table             = 0.1
				create_new_layers        = off
				control_volume_type      = constant
				control_volume_factor    = 3.0
				min_theta_critic         = 0.02
			}
			BEDMATERIAL {
				GRAIN_CLASS {
					diameters = (250)
				}
				MIXTURE {
					name            = unique
					volume_fraction = (100)
				}
				SOIL_DEF {
					name = fixed
					LAYER {
						mixture          = unique
						bottom_elevation = 0.0
					}
				}
				SOIL_ASSIGNMENT {
					index = (1)
					soil  = (fixed)
					type  = index_table
				}
			}
			INITIAL {
				type = initial_mesh
			}
			BEDLOAD {
				PARAMETER {
					upwind        = 0.75
					velocity_area = main
					abrasion      = off
				}
				FORMULA {
					bedload_formula         = smartjaeggi
					bedload_factor          = 1
					angle_of_repose         = 30
					theta_critical_approach = theta_critical_yalin
					d90                     = 200
					d30                     = 80
					theta_critical          = -1.0
				}
				BOUNDARY {
					name   = mattervispa_oben_sed_up
					type   = wall
					string = upstream
				}
				BOUNDARY {
					name   = mattervispa_oben_sed_down
					type   = coupling_IODown
					string = downstream
				}
			}
		}
	}
	BASECHAIN_1D {
		region_name = mattervispa_unten
		GEOMETRY {
			type                = basement
			file                = Mattervispa_unten.bmg
			cross_section_order = (90.86365 70.86365 57.07446 34.86135 10.86365 )
			dump_crosssections  = no
		}
		HYDRAULICS {
			PARAMETER {
				minimum_water_depth   = 0.0001
				riemann_solver        = roe
				stretch_boundary_elem = yes
				simulation_scheme     = explicit
				SECTION_COMPUTATION {
					type            = table
					min_interval    = 0.001
					max_interval    = 0.01
					internal_levees = off
				}
			}
			FRICTION {
				type                = strickler
				default_friction    = 57
				grain_size_friction = no
			}
			INITIAL {
				type = continue
				file = Mattervispa_unten_initial.dat
			}
			BOUNDARY {
				name   = mattervispa_unten_up
				string = upstream
				type   = coupling_hydrograph
				slope  = 15
			}
			BOUNDARY {
				name   = mattervispa_unten_down
				string = downstream
				type   = hqrelation
				slope  = 15
			}
		}
		MORPHOLOGY {
			PARAMETER {
				porosity                 = 37
				density                  = 2650
				wetting_fraction         = 0.1
				control_volume_thickness = 02
				max_dz_table             = 0.1
				create_new_layers        = off
				control_volume_type      = constant
				control_volume_factor    = 3.0
				min_theta_critic         = 0.02
			}
			BEDMATERIAL {
				GRAIN_CLASS {
					diameters = (150)
				}
				MIXTURE {
					name            = unique
					volume_fraction = (100)
				}
				SOIL_DEF {
					name = fixed
					LAYER {
						mixture          = unique
						bottom_elevation = 0.0
					}
				}
				SOIL_ASSIGNMENT {
					index = (1)
					soil  = (fixed)
					type  = index_table
				}
			}
			INITIAL {
				type = initial_mesh
			}
			BEDLOAD {
				PARAMETER {
					upwind        = 0.75
					velocity_area = main
					abrasion      = off
				}
				FORMULA {
					bedload_formula                   = smartjaeggi
					bedload_factor                    = 1
					angle_of_repose                   = 30
					critical_shear_stress_calibration = 1.0
					bed_forms                         = 1.0
					d90                               = 200
					d30                               = 80
					theta_critical_approach           = theta_critical_yalin
				}
				BOUNDARY {
					name   = mattervispa_unten_sed_up
					type   = coupling_sediment_discharge
					string = upstream
					factor = 0.5
				}
				BOUNDARY {
					name   = mattervispa_unten_sed_down
					type   = IODown
					string = downstream
				}
			}
		}
		TIMESTEP {
			CFL               = 0.95
			total_run_time    = 41400
			maximum_time_step = 100
			initial_time_step = 0.1
			start_time        = 0.1
		}
		OUTPUT {
			output_time_step  = 600
			restart_time_step = 1E32
		}
	}
	BASECHAIN_1D {
		region_name = triftbach
		GEOMETRY {
			type                = basement
			file                = triftbach_ohne5_1650_qp.bmg
			cross_section_order = (366.9309 328.4319 315.6826 279.1846 243.6862 190.6889 173.6893 84.19073 74.19090 49.94166 28.15683 90.86365 )
			dump_crosssections  = no
		}
		HYDRAULICS {
			PARAMETER {
				minimum_water_depth   = 0.0001
				stretch_boundary_elem = yes
				riemann_solver        = roe
				simulation_scheme     = explicit
				SECTION_COMPUTATION {
					type            = table
					min_interval    = 0.001
					max_interval    = 0.01
					internal_levees = off
				}
			}
			FRICTION {
				type                = strickler
				default_friction    = 57
				grain_size_friction = no
			}
			INITIAL {
				type = continue
				file = triftbach_initial.dat
			}
			BOUNDARY {
				name                 = triftbach_up
				string               = upstream
				type                 = hydrograph
				file                 = hydrograph_triftbach_hq30.dat
				slope                = 124
				precision            = 0.0001
				number_of_iterations = 250
			}
			BOUNDARY {
				name                = triftbach_down
				string              = downstream
				type                = coupling_zhydrograph
				zhyd_relaxation_tau = 20.0
			}
		}
		TIMESTEP {
			CFL               = 0.95
			total_run_time    = 41400
			maximum_time_step = 100
			initial_time_step = 0.1
			start_time        = 0.1
		}
		OUTPUT {
			output_time_step  = 600
			restart_time_step = 1E32
			SPECIAL_OUTPUT {
				type               = monitor
				output_time_step   = 600
				cross_sections     = (366.9309 328.4319 315.6826 279.1846 243.6862 190.6889 173.6893 84.19073 74.19090 49.94166 28.15683 90.86365 )
				Q                  = (time sum)
				Qb                 = (time sum)
				output_single_file = no
			}
			SPECIAL_OUTPUT {
				type             = BASEviz
				output_time_step = 600
			}
		}
		MORPHOLOGY {
			PARAMETER {
				porosity                 = 37
				density                  = 2650
				wetting_fraction         = 0.1
				control_volume_thickness = 0.2
				max_dz_table             = 0.1
				create_new_layers        = off
				control_volume_type      = constant
				control_volume_factor    = 3.0
				min_theta_critic         = 0.02
			}
			BEDMATERIAL {
				GRAIN_CLASS {
					diameters = (5 15 20 25 35 50 70 90 110 135 175 225)
				}
				MIXTURE {
					name            = unique1
					volume_fraction = (26 5 6 5 9 9 6 6 6 10 7 5)
				}
				SOIL_DEF {
					name = fixed
					LAYER {
						bottom_elevation = 0.0
						mixture          = unique1
					}
				}
				SOIL_ASSIGNMENT {
					index = (1)
					soil  = (fixed)
					type  = index_table
				}
			}
			BEDLOAD {
				PARAMETER {
					upwind        = 0.75
					velocity_area = main
					abrasion      = off
				}
				FORMULA {
					bedload_formula                   = smartjaeggi_multi
					bedload_factor                    = 2
					angle_of_repose                   = 30
					theta_critical_approach           = theta_critical_yalin
					theta_critical                    = -1.0
					critical_shear_stress_calibration = 1.0
					bed_forms                         = 1.0
				}
				BOUNDARY {
					name    = triftbach_sed_up
					type    = sediment_discharge
					string  = upstream
					file    = GeschiebeTb_1000m3.txt
					mixture = unique1
				}
				BOUNDARY {
					name   = triftbach_sed_down
					type   = coupling_IODown
					string = downstream
				}
			}
			INITIAL {
				type = initial_mesh
			}
		}
	}
	COUPLINGS {
		PARAMETER {
			max_time_level             = 1
			factor_time_step_reduction = 0.1
			server                     = yes
			ip_address                 = localhost
			port                       = 5000
			max_buffer                 = 2000
			packet_size                = 1000
			log_network                = off
		}
		COUPLING {
			type                 = junction
			upstream_subdomain1  = mattervispa_oben
			upstream_subdomain2  = triftbach
			downstream_subdomain = mattervispa_unten
			two_way_coupling     = yes
			average_steps        = 2
			print_series         = no
			espilon              = 1E-6
			check                = yes
			HYDRAULICS {
				upstream_interface1  = mattervispa_oben_down
				upstream_interface2  = triftbach_down
				downstream_interface = mattervispa_unten_up
			}
			BEDLOAD {
				upstream_interface1  = mattervispa_oben_sed_down
				upstream_interface2  = triftbach_sed_down
				downstream_interface = mattervispa_unten_sed_up
			}
		}
	}
	PARALLEL {
		number_threads = 1
	}
	PHYSICAL_PROPERTIES {
		gravity   = 9.81
		viscosity = 1e-06
		rho_fluid = 1000
	}
}

Offline

#2 2021-05-17 07:17:46

chri_and
User
Registered: 2017-07-27
Posts: 34

Re: cross section without sediment transport

I also get several of the following warnings for the cross section just above (upstream) the one without sediment:

WARNING -> Bedload control volume mixtures differ more than 0.1 percent, is
   sumofbeta = 1.001, thickness = 0.2, element = 49.94166

Maybe there is a connection between the error and this warning message.

Last edited by chri_and (2021-05-17 07:33:53)

Offline

#3 2021-05-17 09:12:21

Matteo Facchini
Developer
From: Trento
Registered: 2014-09-05
Posts: 281

Re: cross section without sediment transport

Not sure if that's the issue, but maybe you should have the same grain sizes in each sub-domain.

Offline

#4 2021-05-18 15:50:59

chri_and
User
Registered: 2017-07-27
Posts: 34

Re: cross section without sediment transport

Hi Matteo

Thanks, I tried it and changed it so that all domains have the same grain size and distribution. However, the problem with the sediment free cross section remained... do you have any idea what could be the issue, thanks!

Offline

#5 2021-11-23 16:07:24

Matthias Bürgler
Developer
From: Zürich
Registered: 2019-04-04
Posts: 150

Re: cross section without sediment transport

Hi Celine
How do you determine if there is sediment transport or not in this cross section? Does the sediment accumulate in this cross section or could it be an issue with the output?
Best
Matthias

Offline

Board footer

Powered by FluxBB